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Abstract. With the use of state and memory reduction techniques in

veri�cation by explicit state enumeration, runtime becomes a major lim-

iting factor. We describe a parallel version of the explicit state enumera-

tion veri�er Mur' for distributed memory multiprocessors and networks

of workstations that is based on the message passing paradigm. In ex-

periments with three complex cache coherence protocols, parallel Mur'

shows close to linear speedups, which are largely insensitive to commu-

nication latency and bandwidth. There is some slowdown with increas-

ing communication overhead, for which a simple yet relatively accurate

approximation formula is given. Techniques to reduce overhead and re-

quired bandwidth and to allow heterogeneity and dynamically changing

load in the parallel machine are discussed, which we expect will allow

good speedups when using conventional networks of workstations.

1 Introduction

Complex protocols are often veri�ed by examining all reachable protocol states

from a set of possible start states. This reachability analysis can be done using

two di�erent methods: the states can be explicitly enumerated by storing them

individually in a table, or a symbolic method can be used, such as representing

the reachable state space with a binary decision diagram (BDD) [3]. Both meth-

ods have application domains in which they outperform the other; explicit state

enumeration has worked better for the types of industrial protocols examined in

our group [11].

There have been two approaches to improve explicit state enumeration. First,

state reduction methods have been developed that aim at reducing the size of

the reachability graph while ensuring that protocol errors will still be detected.

Examples would be exploiting symmetries, utilizing reversible rules and employ-

ing repetition constructors [13]. These methods directly tackle the main problem

in reachability analysis: the very large number of reachable states of most pro-

tocols. The second approach aims at reducing the amount of memory needed to

perform the reachability analysis. Examples would be bitstate hashing [9] and

hash compaction [26, 20].
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In this paper, we explore a third approach to improve explicit state enumera-

tion: parallel processing. With the use of state and memory reduction techniques,

runtime becomes a major limiting factor [26, 20]. For example, when verifying

complex protocols with the Mur' veri�er [7] using symmetry reduction in com-

bination with hash compaction, a single veri�cation run that does not expose

new errors typically takes several days.

We present a parallel version of the Mur' veri�er for distributed memory

multiprocessors and networks of workstations that uses the message passing

paradigm. Parallel Mur' was originally developed on a network of workstations

(NOW) at UC Berkeley (SPARC20s connected via Myrinet) using generic active

messages [6] as the message passing layer; later it was ported with little e�ort

to an SP2 at IBM Watson.

In parallel Mur', the state table, which stores all reached protocol states, is

partitioned over the nodes of the parallel machine. Thus, the table can be larger

than on a single node. Each node maintains a work queue of unexplored states.

When a node generates a new state, the \owning" node for this state is calculated

with a hash function and the state is sent to this node; this policy implements

randomized load balancing. On reception of a state descriptor, a node �rst checks

if the state has been reached before (with the local part of the state table). If

the state is new, it is inserted in the state table and the local work queue.

Special algorithms for termination detection and error trace generation have to

be employed in this distributed setting. Due to space constraints, however, only

the termination detection algorithm will be discussed in this paper. We also

show analytically that the state space is typically very evenly distributed over

the nodes.

We measured the speedup of parallel Mur' when verifying three complex

cache coherence protocols: SCI [12], DASH [17] and FLASH [16]. On a 63 node

SP2 the speedup was 44.2 for SCI and 53.7 for DASH, while we obtained

speedups of 26.6 for SCI, 27.8 for DASH, and 29.4 for FLASH on a 32 node

NOW in Berkeley. Thus, our algorithm achieves close to linear speedup. In ad-

dition, experiments performed at Berkeley [18] show that the runtime of parallel

Mur' is largely insensitive to increased communication latency and reduced

bandwidth. There is, however, some sensitivity to communication overhead. We

give a simple formula for the expected runtime on a parallel machine depending

on the communication overhead. We show empirically that the formula accu-

rately predicts parallel speedup.

Aggarwal, Alonso and Courcoubetis [1] also presented a distributed reach-

ability algorithm. Their algorithm seems more complicated than ours, has not

been implemented and the correctness of the termination detection relies on tim-

ing assumptions that may be di�cult to guarantee. One potential advantage of

their method is that it might be usable under dynamically changing load con-

ditions on a network of heterogeneous workstations. We propose an extension

of our algorithm, however, that also allows heterogeneous systems with dynam-

ically changing load and, at the same time, reduces the communication volume

by typically one or two orders of magnitude.
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Kumar and Vemuri [15] proposed and implemented a distributed algorithm

to check the equivalence of two �nite state machines, which essentially does a

reachability analysis of the product machine. Their algorithm synchronizes after

each breadth-�rst level and does not overlap communication and computation.

Although the examples they present require only infrequent communication with

very small messages, the reported speedups are worse than the ones reported

here. In addition, their algorithm seems to have a high overhead, since it is only

faster than a sequential one when running on four nodes.

Parallel Mur', however, when running on one node is as fast as the most

recent version (3.0) of sequential Mur', for which the runtime was optimized. In

fact, parallel Mur' is based on this version of sequential Mur', which contains

symmetry reduction and hash compaction.

There have also been some e�orts to parallelize BDD-based veri�cation meth-

ods. Stornetta and Brewer [23, 22] and Ranjan et al. [19] have presented dis-

tributed memory BDD algorithms. Both algorithms only achieve speedups in

comparison to sequential versions if the sequential versions run out of memory

and are forced to do swapping, but they enable the use of the total memory

of the parallel machine. Kimura and Clarke [14] presented BDD algorithms for

a shared memory machine and reported a speedup of roughly 10 on 15 nodes,

while e�ciently using the total available memory.

2 Active Messages

Active messages [24] have been introduced to reduce the communication costs

in message passing and can be thought of as a fast message passing library. In

contrast to a message in traditional message passing, an active message also

contains the address of a procedure, called handler, that will be called on the

destination node after the arrival of the message. For example, when a state

descriptor s is to be sent to some node n, we will send the active message

\Receive(s)" to n, indicating that the handler Receive() should be called on

node n with the state descriptor s as argument.

When sending an active message, the sender does not wait for the message to

arrive at the receiver but continues immediately. Upon arrival of the message, the

receiver's current stream of control is not interrupted. Instead, the receiver has to

periodically call poll(), which, in turn, calls all handlers for the active messages

that have arrived since the last call to poll(). We will say that a message is

received after the corresponding handler has returned. The use of handlers and

polling enables e�cient implementations of the active message scheme.

All nodes have to execute the same program when using active messages.

Each node, however, is assigned a unique node number from f0; : : : ; N�1g, where

N denotes the number of nodes in the parallel machine. To implement a \master"

node with special responsibilities like, for example, startstate generation, an

if statement can be used with the condition that the node number is 0. The

barrier() command synchronizes all the nodes running the parallel program by

waiting until every node has reached the barrier.
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3 Parallel Explicit State Enumeration

The Basic Algorithm

The basic algorithm that runs on each node of the parallel machine is given

in Figure 1 and described in this paragraph. Note that the global variables are

local to each node since we assume distributed memory. The state enumeration

is started by calling Search() on each node. The master node generates the

startstates and distributes them by calling Send(). In the Send() procedure, the

state is �rst canonicalized (for symmetry reduction) and then sent to the owning

node, whose node number is calculated by a hash function h(). The handler

Receive() checks a state against the local state table and potentially inserts it

into the state table and queue. The search loop dequeues a state, generates its

successors and sends them to the owning nodes. Note that this loop calls poll()

to execute the handlers for newly arrived messages. The search loop is exited

as soon as termination is detected. Termination detection is described in more

detail in the next subsection.

Termination Detection

The parallel search has terminated when the following two conditions hold: there

are no more messages in progress (i.e. sent but not received) and there are no

more states in the queues Q. Note that the latter condition also implies that no

state is currently being expanded, since states being expanded are removed from

the queue only after their expansion.

Figure 2 shows the termination detection algorithm used. The algorithm is

only invoked after the master has been idle for longer than a certain threshold

value. Setting this value to, say, 0.1s results in negligible runtime overhead for

termination detection. The correctness proof is similar to the one presented

in [25] and is omitted here.

Randomized Load Balancing

We now examine how well the hash function balances the state space over the

individual state tables. We look at a particular node and assume that for each

state the probability that it is sent to this node is 1=N , i.e., that the hash

function distributes states uniformly. (Universal hashing [4], used in Mur' [20],

can be shown to distribute at least as well as uniformly.) Let n denote the

number of reachable states and Y the random variable describing the number of

states sent to our node, which has the expected value

�

Y = n=N . For a large n,

Y is distributed according to a normal distribution because of the central limit

theorem. To bound the probability that the relative error of Y in comparison to

�

Y

is larger than a certain constant r, we use that for every x > 0, 1��(x) < �(x)=x,

where �(x) and �(x) = e

�x

2

=2

=

p

2� denote the standard normal distribution and

density functions [8]. Using basic calculations one obtains that

Pr(jY=

�

Y � 1 j > r) < 2 �(z)=z with z = r

p

n=(N � 1) :
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var // global variables, but local to each node

T : hash table; // state table

Q: FIFO queue; // state queue

StopSend : boolean; // for termination detection

Work, Sent, Received : integer;

Search() // main routine

begin

T := ;; Q := ;; // initialization

StopSend := false; Sent := 0; Received := 0;

barrier();

if I am the master then // master generates startstates

for each startstate s

0

do

Send(s

0

);

end

do // search loop

if Q 6= ; then begin

s := top(Q);

for all s

0

2 successors(s) do

Send(s

0

);

end

Q := Q� fsg;

end

poll();

while not Terminated();

end

Send(s: state) // send state s to \random" node h(s)

begin

s

c

:= canonicalize(s); // symmetry reduction

while StopSend do // wait for StopSend = false

poll(); // (for termination detection)

end

Sent++;

send active message Receive(s

c

) to node h(s

c

);

end

Receive(s: state) // receive state (active message handler)

begin

Received++;

if s =2 T then begin

insert s in T ;

insert s in Q;

end

end

Fig. 1. Parallel Explicit State Enumeration
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Terminated(): boolean

begin

if I am the master then // master initiates termination check

if idletime exceeds threshold then begin

Work := 0;

send active message ReportCounters() to all nodes;

wait for all replies (i.e., calls to SumCounters());

if Work > 0 then // continue search

send active message Continue() to all nodes;

else // terminate search

notify all nodes of termination (details omitted);

end

return termination status;

end

// active message handlers

ReportCounters() // report counter values

begin

StopSend := true;

send active message SumCounters(Sent� Received+ jQ j) to master;

end

SumCounters(w: integer) // master sums counter values

begin

Work := Work+w;

end

Continue() // continue with search

begin

StopSend := false;

end

Fig. 2. Termination Detection

For example, when n=10

8

and N=32, the probability that the relative error

exceeds r=0:1% is smaller than 8:85% and the probability that the relative error

exceeds r=0:5% is smaller than 2:73�10

�19

. Generally, if the number of reachable

states n is large and the number of nodes N is not too large, the state space will

be distributed very evenly over the nodes.

Results

Figures 3 and 4 show the measured speedup of parallel Mur' on a 63-node SP2

at IBM Watson and on a 32-node UltraSPARC/Myrinet NOW at Berkeley,

for instances of the SCI, DASH and FLASH protocols. Some parameters of

these instances are shown in Table 1. The protocols were scaled to both provide

interesting data and make the process of running the examples not too time-

consuming. The speedup graphs show that the Mur' veri�er can be parallelized

quite e�ciently.
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Table 1. Example protocols

reachable successors bytes/ single-node runtime

protocol states generated state diameter NOW SP2

SCI 1179 942 2973 536 124 46 717s 2804s

DASH 254 937 2646 647 532 64 1287s 5204s

FLASH 1021 464 4556 496 136 45 2477s n/a
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Fig. 3. Speedups for the SCI (dotted) and DASH (solid) protocols, calculated from the

average runtime over two runs on an SP2, in comparison to linear speedup (dashed)
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Fig. 4. Speedups for the SCI (dotted), DASH (solid) and FLASH (dashed and dotted)

protocols, calculated from the average runtime over �ve runs on the Berkeley NOW,

in comparison to linear speedup (dashed)
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4 Estimating the Speedup

Rich Martin et al. [18] have performed a study on the Berkeley NOW of the

impact of communication performance on several parallel applications including

Mur'. They characterized communication performance based on the LogGP

model [5, 2] with four parameters: latency L, overhead o, gap g and time-per-

byte G. The latency is the delay in communicating a small message, the overhead

is the average time consumed in sending or receiving a message, the gap is the

minimum time between two messages, i.e. the reciprocal message bandwidth,

and the time-per-byte is the reciprocal bulk transfer bandwidth.

The communication layer of the NOW was modi�ed so that each of these

parameters could be slowed down independently, starting from the following

values of the unmodi�ed communication layer: o=3:5�s, g=7:0�s, L=5:5�s and

G=38MB/s. Parallel Mur', when verifying the SCI example, showed only neg-

ligible slowdown when either increasing latency or gap by up to 100�s or when

reducing the bulk transfer bandwidth to 1MB/s. The insensitivity to latency can

be explained by observing that if there are enough states in the state queues,

all latency is overlapped with computation. Parallel Mur' is not sensitive to

increased gap since it does not send messages in bursts. Finally, the bandwidth

requirement per node is smaller than 1MB/s (roughly 0.5MB/s).

The runtime of parallel Mur', however, showed some dependency on the

overhead, for which we now derive an approximation formula. We assume that

each node sends m=N messages, where m denotes the total number of messages

sent. On the average, a fraction of (N � 1)=N of these messages will be sent

to nodes di�erent from the sender, each resulting in an overhead of 4o, which

stems from the sending and receiving of the message and its (automatically

generated) reply message. Assuming linear speedup if there were no overhead,

we approximate the runtime t

N

on N nodes as

t

N

= 4o m (N � 1)=N

2

+ t

1

=N ; (1)

where t

1

denotes the runtime on a single node. Table 2 shows that (1) quite

accurately predicts the measured runtimes for a range of di�erent overhead values

and numbers of nodes. Note that the numbers of messages sent are (slightly)

smaller than the number of generated successors (2:974 � 10

6

), which is due to a

small cache of recently sent states.

5 Improvements of the Basic Algorithm

Message Aggregation

By packing several states into one message, one can reduce the overhead per

state. This well-known technique basically trades excess parallelism for commu-

nication performance. As shown in Figure 5, each of our three sample protocols

provides a high degree of parallelism measured in the number of states in each
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Table 2. Measured (t

N;m

) and predicted (t

N;p

) runtimes for the SCI protocol (in

seconds) when varying the overhead. Measurements are averaged over �ve runs.

messages added overhead [�s]

sent m 0 25 50 100 200

N [million] t

N;m

t

N;p

t

N;m

t

N;p

t

N;m

t

N;p

t

N;m

t

N;p

t

N;m

t

N;p

1 1.983 705.8

2 2.534 372.2 361.8 432.1 425.1 496.1 488.5 617.4 615.2 891.7 868.6

16 2.697 52.7 46.3 66.5 62.1 81.6 77.9 114.1 109.5 177.2 172.7

32 2.706 26.2 23.2 34.6 31.4 43.1 39.6 59.4 56.0 92.8 88.7
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Fig. 5. Number of states in each breadth-�rst level for the SCI (dotted), DASH (solid)

and FLASH (dashed and dotted) protocols

level of a breadth-�rst search, which enabled the e�cient parallelization in the

�rst place.

Table 3 shows the e�ect of message aggregation on runtime t

N

and the num-

ber of messages sentm for the unmodi�ed NOW and with an additional overhead

of 100�s. An overhead of 100�s is typical for message passing libraries based on

TCP/IP. In both cases, the number of messages sent is strongly reduced. Our

implementation packs 10 states into each message given that there are more

than 20 states in the local queue. We have not tried to optimize these values

or even make the message size vary with the number of states in the queue.

While the reduction in runtime is small in the case of the unmodi�ed NOW (as

expected), in the high overhead case we achieve approximately a factor of two

reduction, approaching the runtime on the unmodi�ed NOW.

Aiming for a Conventional NOW

The bandwidth requirement of parallel Mur' becomes a problem on a conven-

tional NOW, like workstations connected by Ethernet. For example, when veri-
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Table 3. Measured (t

N;m

) and predicted (t

N;p

) runtimes and messages sent m (in

million) for the SCI protocol when using message aggregation in comparison to the

basic scheme. Measurements are averaged over six runs.

added overhead [�s]

0 100

basic scheme aggregation basic scheme aggregation

N t

N;m

m t

N;m

m t

N;p

t

N;m

m t

N;m

m t

N;p

16 52.3s 2.692 47.9s .334 43.9s 114.1s 2.692 54.8s .315 51.3s

32 25.7s 2.708 25.9s .400 22.0s 58.9s 2.703 29.8s .350 26.2s

fying the DASH protocol, each node requires a bandwidth of roughly 0.5MB/s,

which would make an implementation even on top of switched Ethernet (where

each node gets 10Mb/s for itself) di�cult. In addition, the presented algorithm

only works optimally if the state table size is proportional to the speed for each

of the nodes, and thus allows only limited heterogeneity. Also, randomized load

balancing performs poorly if the load on the nodes changes dynamically, since

the hash function is �xed.

The algorithm can, however, be adapted to the situation of a slow network,

heterogeneity and dynamically changing load. Instead of sending a full state s,

each node only sends a (hash) signature c(s) to the owning node h(s), which,

in turn, returns a bit indicating whether the state had been reached before. It

can be shown in a similar fashion to [20] that this scheme will typically enable

a reduction in bandwidth requirements of one or two orders of magnitude at

the cost of a small probability that the search becomes incomplete. Note that in

this scheme each node generates its work (new states to explore) by itself, which

has the e�ect that a fast node needing much work will also generate much work

for itself. Thus, the scheme is well suited for situations of dynamically changing

load. To provide each node with initial work and to \restart" a node that runs

out of states, a load balancing protocol similar to the one described in [25] can

be employed. Also, heterogeneous systems are allowed since the tabulation of

states is now independent of their expansion.

6 Conclusions and Future Research

Runtime has been becoming a major bottleneck in veri�cation. We show that

the Mur' veri�er can be parallelized quite e�ciently. The resulting algorithm

is shown to run with close to linear speedup on a wide range of distributed

memory multiprocessors and networks of workstations. In addition, we give a

formula with which the speedup of parallel Mur' can be predicted depending

on the communication performance. Since the state table is partitioned over the

parallel machine, the algorithm also allows the veri�cation of larger protocols.

The methods used to parallelize Mur' could also be used for other explicit

state veri�cation tools like SPIN [10]. The architectures for which parallel Mur'
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was developed { distributed memory multiprocessors and networks of worksta-

tions { are becoming more common. Techniques to reduce overhead and required

bandwidth and to allow heterogeneity and dynamically changing load in the par-

allel machine are discussed, which we expect will allow good speedups when using

conventional networks of workstations.

The algorithm presented is compatible with the two newer reduction tech-

niques in Mur' [13], reversible rules and repetition constructors, which were not

yet available in the public release. It is also compatible with the latest version

of hash compaction [21].

The most recent version of sequential Mur', on which the parallel version

is based, does not support the checking of temporal properties because of di�-

culties combining this checking with symmetry reduction. Thus, we did not put

high priority on parallelizing the veri�cation of temporal properties. This seems,

however, to be an interesting area for future research.
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